KAKATIYA INSTITUTE OF TECHNOLOGY & SCIENCE, WARANGAL-15 DEPARTMENT OF PS AND M&H

No. /PS/M&H/KITS/2024

Date: 30 /09/2024

CIRCULAR

Sub: I Semester -Allotment of Practicum topics- Reg.

INSTRUCTIONS

Students:

- 1. The students should meet immediately the allotted course faculty for practicum and start working on the practicum with the guidance of course faculty.
- 2. To complete the Practicum, the student shall work in laboratories under supervision of allotted course faculty, in the allotted hours in the classwork timetable and also outside the class work hours during weekdays.

Practicum/Course Faculty:

- 1. The course faculty are advised to guide the allotted students for practicum during the semester course work.
- 2. In case of any clash in respect of practicum slot and practicum-faculty classwork, the practicum faculty should allot 4.00 p.m. to 6.00 p.m. slot to their practicum students on any full day. The same shall be informed to the class teacher, for record

Following are the practicum topics allotted to the I semester students of 1CSM2 section.

S.	Roll no.	Duration of a single 1	Practicum	Course
No.	of the student	Practicum topic allotted	under the course	faculty
1	B24AI065	Newton's Method for Finding Roots of Equations	Differential Calculus and ordinary differential equations [DCODE]	Narahari Raji Reddy (NRR)
2	B24AI066	Use Euler forward and Euler backward scheme to LCR Circuit and its solution	DCODE	NRR
3	B24AI067	Application of second order differential equations: Spring with a mass body.	DCODE	NRR
4	B24AI068	Deflections of beams using differential equation	DCODE	NRR
5	B24AI069	Iterative method for finding root of equations- Its convergence & divergence.	DCODE	NRR
6	B24AI070	Real world applications of simultaneous linear equations	DCODE	NRR
7	B24AI071	Applications and verification of Rolle's mean value theorem for the function of one variable.	DCODE	NRR
8	B24AI072	Lagrange's mean value theorem and its application for the function of one variable	DCODE	NRR
9	B24AI073	Application of Linear differential equations- Electrical Circuits: -LCR Circuit	DCODE	NRR
10	B24AI074	Expanding the given function of one variable up to required number of terms using Taylor's series method.	DCODE	NRR
11	B24AI075	Motion of a boat across a stream: i) Formation of the model problem ii) Solving the problem	DCODE	NRR
12	B24AI076	Expanding the given two variable functions up to required number of terms using Taylor's series method.	DCODE	NRR
13	B24AI077	Application of first order differential equations: Maxima and minima of functions of one variable, its applications- First order differential equation	DCODE	NRR
14	B24AI078	"Analysis of Water Quality Parameters using Spectrophotometry"	Engineering Chemistry (EC)	Dr. M. Ranadheer Kumar
15	B24AI079	"Determination of pH and Total Dissolved Solids in Industrial Effluents"	EC	MRK
16	B24AI080	Removal of Heavy Metals from Wastewater using Adsorption Techniques"	EC	MRK

17	B24AI081	"Synthesis and Characterization of	EC	MRK
18	B24AI082	Nanoparticles for Catalytic Applications" "Investigation of Corrosion Inhibition using Green Inhibitors"	EC	MRK
19	B24AI083	Synthesis of Nanoparticles: Methods like solgel, chemical reduction, or physical vapor deposition.	EC	MRK
20	B24AI084	"Development of a Low-Cost Sensor for Detection of Toxic Gases"	EC	MRK
21	B24AI085	"Study of the Effects of pH on the Degradation of Polymers	EC	MRK
22	B24AI086	Passivation : Study of protective coatings and materials that resist corrosion	EC	MRK
23	B24AI087	"Design and Fabrication of a Solar Still for Water Purification"	EC	MRK
24	B24AI088	"Development of a Novel Adsorbent for the Removal of Pollutants from Water"	EC	MRK
25	B24AI089	Investigation of the Electrochemical Behavior of a Corroding Metal"	EC	MRK
26	B24AI090	Green chemistry in organic synthesis	EC	MRK
27	B24AI091	4-bit Binary Adder-Subtractor	Switching Theory and Logic Design [STLD]	Dr. V. Raju [VR]
28	B24AI092	4-bit Carry Look-Ahead Adder	STLD	VR
29	B24AI093	N-Bit Parallel Adder	STLD	VR
30	B24AI094	7-Segment Display Decoder (BCD to 7 Segment)	STLD	VR
31	B24AI095	Priority Encoder (8-to-3)	STLD	VR
32	B24AI096	4:1 Multiplexer Implementation of Boolean Function	STLD	VR
33	B24AI097	Full Adder using Multiplexer	STLD	VR
34	B24AI098	4-bit Synchronous Binary Counter	STLD	VR
35	B24AI099	4-bit Asynchronous Binary Counter	STLD	VR
36	B24AI100	Johnson Counter	STLD	VR
37	B24AI101	SR Flip-Flop Implementation	STLD	VR
38	B24AI102	J-K Flip Flop with Race Around Condition	STLD	VR
39	B24AI103	Binary to Gray Code Converter	STLD	VR
40	B24AI104	Problem Statement	Programming	Ms.D.
	22111101	A math game is introduced in a school	for Problem	Haritha
		competition to test the skills of students. The	Solving with C	Turitiu
		game deals with Prime numbers.	[PPSC]	
		The game rules are as follows:		
		From the given set of distinct natural		
		numbers as input, consider the		
		smallest natural number as q.		
		Your task is to compute the smallest		
		prime number (p) such that when p is		
		divided by all the distinct numbers in		
		the input, except q, should result q as		
		the remainder.		
41	B24AI105	<u>Problem Statement</u>	PPSC	DH

	I	1 1 1 1 1		1
		A Company has decided to give some gifts to all of its employees. For that, the company has given some rank to each employee. Based on that rank, the company has made certain rules for distributing the gifts. The rules for distributing the gifts are: Each employee must receive at least one gift. Employees having higher ranking get a greater number of gifts than their neighbours. What is the minimum number of gifts required by the company?		
42	B24AI106	Problem Statement Consecutive Prime Sum Some prime numbers can be expressed as a sum of other consecutive prime numbers. For example $5 = 2 + 3$, $17 = 2 + 3 + 5 + 7$, $41 = 2 + 3 + 5 + 7$ + $11 + 13$.	PPSC	DH
		Your task is to find out how many prime numbers which satisfy this property are present in the range 3 to N subject to a constraint that summation should always start with number 2. Write code to find out the number of prime numbers that satisfy the above-mentioned property in a given range.		
43	B24AI107	Problem Statement Write a program to accept a number representation, perform the successive base reductions as given below and print the resulting final number.	PPSC	DH
44	B24AI108	Problem Statement For enhancing the book reading, the school distributed story books to students as part of the Children's Day celebrations. To increase the reading habit, the class teacher decided to exchange the books every week so that everyone will have a different book to read. She wants to know how many possible exchanges are possible. If they have 4 books and students, the possible exchanges are 9. Bi is the book of i-th student and after the exchange, he should get a different book, other than Bi.	PPSC	DH
45	B24AI109	Problem Statement In the theory of numbers, square free numbers have a special place. A square free number is one that is not divisible by a perfect square (other than 1). Thus 72 is divisible by 36 (a perfect square), and is not a square free number, but 70 has factors 1, 2, 5,	PPSC	DH

	1	7 10 14 05 150 A (1)		
		7, 10, 14, 35 and 70. As none of these are		
		perfect squares (other than 1), 70 is a square		
		free number.		
		For some algorithms, it is important to find		
		out the square free numbers that divide a		
		number. Note that 1 is not considered a		
		square free number.		
		In this problem, you are asked to write a		
		program to find the number of square free		
		numbers that divide a given number.		
46	B24AI110	Problem Statement	PPSC	DH
10		Given an array of integers, perform atmost K	1130	211
		operations so that the sum of elements of		
		final array is minimum. An operation is		
		defined as follows –		
		Consider any 1 element from the		
		-		
		array, arr[i].		
		Replace arr[i] by floor(arr[i]/2). Replace arr in an arration and the		
		Perform next operations on the		
		updated array.		
		The task is to minimize the sum after		
		utmost K operations.		
		Constraints		
		• 1 <= N, K <= 10^5		
47	B24AI111	Problem Statement	PPSC	DH
		Implement the following function:		
		char* Decrypt (char str[], int n);		
		The function accepts a string 'str' of size 'n' as		
		its argument. Implement the function to		
		decrypt the given 'str' in such a way that each		
		character of the string is replaced as follows:		
		('a' -> 'z', 'b' -> 'y', 'c' -> 'x', 'd' -> 'w', 'e' -> 'v',		
		'f' -> 'u', 'g' -> 't', 'h' -> 's', 'i' -> 'r', 'j' -> 'q', 'k' ->		
		'p', 'l' -> 'o', 'm' -> 'n', 'n' -> 'm', 'o' -> 'l', 'p' ->		
		'k', 'q' -> 'j', 'r' -> 'i', 's' -> 'h', 't' -> 'g', 'u' -> 'f',		
		'v' -> 'e', 'w' -> 'd', 'x' -> 'c', 'y' -> 'b', 'z' -> 'a').		
		Return the decrypted string.		
		Assumption:		
		The string contains only lowercase alphabets.		
48	B24AI112	Problem Statement	PPSC	DH
		Implement the following function:		·
		def AddDistinctDuplicate (a,b,c,d):		
		The function accepts four integers 'a','b','c'		
		and 'd' as its argument . Implement the		
		function to find the sum of distinct numbers		
		and subtract the duplicate number and return		
		the difference (sum of distinct number -		
		,		
		duplicate number). • For sum of distinct number add all		
		number that appears only once		
		For duplicate number subtract the duplicate		
		number only once		

49	B24AI113	Problem Statement	PPSC	DH
	DZ H 11110	Airport security officials have confiscated	1100	1011
		several items of the passengers at the security		
		checkpoint. All the items have been dumped		
		into a huge box (array). Each item possesses a		
		certain amount of risk[0,1,2]. Here, the risk		
		severity of the items represent an array[] of N		
		number of integer values. The task here is to		
		sort the items based on their levels of risk in		
		the array. The risk values range from 0 to 2.		
50	B24AI114	Problem Statement	PPSC	DH
30	D24A1114	int NumberOfBalls (int arr[], int n);	1150	DII
		The function accepts a non-negative integer		
		array 'arr' of size 'n' as its argument. Every		
		Kth element in the array is the number of		
		balls in the Kth row of a box. Every Kth row		
		•		
		of the box needs $(K+1)^2$ balls, where $0 \le K$		
		<= (n-1). Implement the function to find the		
		number of balls required to complete each		
		row of the box and return the total number of		
F4	DOLLIGAT	balls required.	DDCC	DII
51	B24AI115	Problem Statement	PPSC	DH
		Alice loves candies, so she went into a candy		
		shop. Now the shopkeeper sells candies in		
		packets and all packets contain an odd		
		number of candies (1, 3, 5, 7). Alice wants		
		exactly N candies but she also loves patterns		
		so she decided to buy candies only if the		
		number of candies in the packets is		
		consecutive and distinct (means she cannot		
		buy the same candy packet more than once)		
		and the sum of all the candies in those		
		packets is exactly N.		
		Alice has an infinite amount of money and		
		the shopkeeper also has infinite amount		
		candy packets, so Alice wonders how many		
		different sets of candy packets she can buy.		
		Find the number of different sets of candy		
		packets that Alice can buy.		
52	B24AI116	<u>Problem Statement</u>	PPSC	DH
		Alex works at a clothing store. There is a		
		large pile of socks that must be paired by		
		color for sale. Given an array of integers		
		representing the color of each sock, determine		
		how many pairs of socks with matching		
		colors there are.		
		For example, there are n=7 socks with		
		colors $ar = \{1,2,1,2,1,3,2\}$. There is one pair of		
		color 1 and one of color 2 . There are three odd		
		socks left, one of each color. The number of		
		pairs is 2 .		
	<u>I</u>	1 1		

53	B24AI117	DARE TO DREAM-AN ANALYSIS	English	Dr. G.
•		A.P.J.ABDUL KALAM'S AUTOBIOGRAPHY,	Communication	
		'WINGS OFFIRE'	and Report	Devi
			Writing	[GMLD]
			[ECRW]	[01/122]
54	B24AI118	USE OF ARTICLES TO CONVEY MEANING	ECRW	GMLD
		IN DIFFERENT SITUATIONS		
55	B24AI118	SKILL IMPROVEMENT THROUGH	ECRW	GMLD
		LANGUAGE LEARNING- ANALYZE ANY		
		TWO LESSONS WHICH YOU STUDIED IN		
		INTERMEDIATE TEXT BOOK TO		
- /	DO4 A 14 20	SUBSTANTIATE THIS STATEMENT	ECDIA	CMD
56	B24AI120	THE POSSIBILITIES OF LANGUAGE LEARNING THROUGH PRESCRIBED	ECRW	GMLD
		SYLLABUS- WRITE A CONCLUSIVE		
		REPORT WITH YOUR FINDINGS AND		
		RECOMMENDATIONS WITH ANALYSIS		
		ON THE SYLLABUS OF NCERT OF X CLASS		
57	B24AI121	IMPORTANCE OF LSRW IN LANGUAGE	ECRW	GMLD
58	B24AI122	ENGLISH COMMUNICATION AND	ECRW	GMLD
		COSMOPOLITON LIFE	20111	CIVIZE
59	B24AI123	TAKE AN INTERVIEW WITH ANY THREE	ECRW	GMLD
		BUS CONDUCTORS, DRIVERS AND		
		WOMEN PASSANGERS AND REFLECT ON		
		THE POLICY OF THE GOVERNMENT 'FREE		
		BUS TRAVEL FOR WOMEN'		
60	B24AI124	VISIT ANY TWO GOVERNMENT PRIMARY	ECRW	GMLD
		SCHOOLS IN YOUR AREA AND INTERACT		
		WITH TEACHERS OF ENGLISH AND		
		STUDENTS. PREPARE A QUESTIONARE OF TWENTY QUESTIONS TO UNDERSTAND		
		HOW ENGLISH IS BEING TAUGHT AND		
		LEARNT IN PRIMARY SCHOOLS. PRESENT		
		YOUR ANALYSIS		
61	B24AI125	YOUR PLANS TO PREPARE FOR	ECRW	GMLD
		TOEFL/GRE/CAT/IELTS	20111	
62	B24AI126	BUSINESS COMMUNICATION	ECRW	GMLD
63	B24AI127	COMMUNICATIVE ENGLISH	ECRW	GMLD
64	B24AI128	SPOKEN ENGLISH	ECRW	GMLD

(Signature of class teacher) Narahari Raji Reddy Assistant Professor Dept. of M & H